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Abstract The widespread availability of computational graphics

Shared variance can be cxpressed graphically by for peraonal computers has greatly increased the potentjal

’ overlapping circles. A procedurs 13 presented for for visual displays of data. The display of pafrulse
correlations botween two and three variables {3 of special

locating the circles so that ‘the graphical and statistical
relations correspond exactly. The procedure §3 extended

interest to paychologists. To motivate the subsequent

to represcnt p ¢
P Part and partlal correlations betueen threc , developnent, consider a2 case that arcse In our own

variables. 0D laboratory. College students participated in three tasks,

o

an auditory dichotic llistening task, a visual scanning

task, and an arithmetic task. The correlations betuecen

the tasks were v
(auditory, visual ) = .42
\ Q {(auditory, arithuentic) = ,47 .
{visual, arithmetic) = .30
— N ¢
- o Our Interest was in the extent to which varfance was
' shared between pairs of tasks, with some portion of the
varlance In the third task "held constant™. Part and '
partial correlations may be used to express the
statistical relations. lHowever this method of ,
R sunnarfzation was not appropriate for verbal presentations
of our results, especlally to audiences who were not
fami{liar with advanced methods of correlational analysis.
0
ERIC SEEESRE
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An alternative to the statistical summary is to use a
visual display, in whien the varliance of each varfable is
represcnted by a circle. Shared varlance i3’ represented
by the overlap between two circles. If three variables
are represented the resulting figure is called a
ballantine, Several authors have advocated thejr use to
represent covariation {n Lqree variable problens (e.;.
Cohen and thun. 1975). The ballantine Is a useful
display of shared and unique varlance bceause ecach
conponent of variance czn be Identiflied visually in the
reonetric form. This can be seen in Figure 1, which I3 a
ballantine representation of our data. The varlous part
and partial corrclations can be expressed jn terms of the
regions of overlap (a, v8 340 ,,and iy ) shown in the

tigure,

Flgure 1 here

L T R e L LT T ey

Ubviously, ballantines are generated rrom ajnpluep
"two clrele” figures that rapresont the
variance-covariance relations between two varlables, X and
Y. This {3 shown {n Figure 2. If representations sunh as

Figures 1 and 2 aro to portray data acourately the

Ballantines Page g

prcparation of a circle's area lyirg in the Intersection
region (Region A in Figure 2) should be exactly equal to r2
» the squared correlation between the appropriate
variables. 1In fact, the ballantine of Flgdre 1 does
fulfill this condition for our data. Figure 2 exactly
ropresonts the correlation betwoen the auditory and visual
detectlion measuros. The purpose of this note is to

explain how such figures may be constructed.

9 Flgure 2 hore

The Underiyloe Goometric Relationa.

Lot the circles X,Y, and Z stand for the varifances of
three varlables, x,y, and z: Lot the circleos have a
conskant radius, R. This "visually standardizes" the
variables by reproacnting Var (x), Var (y) and Var (z) by
circles with area 7]‘.?1 + Two circles X, Y are saild to
be placed corpectly with roapect to each other If and only
if the overlappling arva contalns the proportion ¢f cach
¢ircele equal to the squared correlation coefficlent. In

tho caso of Figure 1, area A {3 equal to

M Az Ay, TR

ot
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The area of intersaction of circles X and Y, both of
radius R, {3 detarminad by the length of line L between
the center of circla X (Cx) and the centar of the circle Y
(?y).'l.e. by L&yln. This 1s ahown in Figurc 3.
Therefore, for fixed Cx, q,-uy be locatsd anywhcre on the
¢ircle of radius lxscuntcrod on Cy . If we adopt the
conventions that L’S be horlzontal and that ¥ always lies
to the left of )/, thce locus of circle Y {3 thus determincd

once X 13 located and Lxsla determined.

L L L L L T Y Ty

Flgure 3 hore

L L T L L L e

The position of the third circle of & ballantine can
be detarmined in a similar way. The center of circle 2
(representing the varlance of variable Z) aust lie on the
circunference of a circle of radius Lyz: centered on Cy
and on the clrcumfercnce of a circle of radlusl.ya
centered on CJ. Since two non-identical clrcles intersect
at elther two or no points, there are two poasible
ballantines whan the thras variables share coumon
variance. In ona of thesas, oiqsle Z lias above the llinc Lxu

s In the other it 1ies below it. Either figure wuld be an

Ballantines

appropriate ballantine. Hare circlc Z will always 1ic

below the horlizontal, These relations ars shown In Figure

8,

For the sake of conplation two deganerate cases nust
be nentioned. Irﬁ‘ya 1, then circles X and Z are
identical (LXS 2 0), and aiwilarly for X and Z and Y and
2. IfAyy =0, then L 22R, 30 that circles X and Y do
not overlap. By convention the relation Lx = 2R will be
used, 3o that the circles for varlables that do not share

connon variance will lja next to each other without

overlapping.

EE L L N Y L TR gy

Flgure X

»

Icicononetric Relationa

An algorithu for dctermininf the longth of ny will
now be presented. The identical algorithm, with a change
of variable namen, applias to LXL and Ly‘ « Developing the

algorithm 1s basically an sxercise in high schaol

trigonometry,

o

Page 7 —— \\\
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Tho algoritha will ba dascribed by N':rerrlns to the
lincs 2nd anglas shouwn In Figura 3. Consider the segpment
tound by line €8 and arc L . This has area 172 A, uhere

A !s the area of overlap. Tha value of A {4 dcfined by

2 .
(2) w2 A= 12k (R=Sm{oa ))  (Burincton,
1948).
a
where o {3 neasured by radlans.
For a ‘'standard' circle, with R=1, equation (1) nay

be substituted into (2). Then, simplifyling,
2 . b
‘”/’:ﬂ)‘ = NS (X ) \ -

t
Hote that If A, 13 1 has the value of M (1n

Y

radlans). At this polnt the two circles will be

Y

1 9
tdentical. At the other extreae, ”4){ 1s zuroo( 30,

This astablishes linits on o)\ .

Equation (3) derinesol tmplieltly, a3 a

transcendental function or,t: . The value of & lor a

L}

&
given valua orA.x may be approximated to any dasired

y
degree pf accuracy. Tho exlistance of a uniqua solution 1a
ensured by tha fact that tha quanatity (&- $in (ol ))

increases aonotonically frox JT/\ throughout the ranpe

ERI
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of A . (The first derivative, 1 - cos (A), I3
non-nagative t‘orDSo\S']f‘). Onca X 1s found, the value
of R can be calculatad directly. By Inspaction of Figure

3
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(0 Lyyg = 2R=2h

liowever

(5) R-h = Re (cos (o(/:zn

Substituting , and letting R = 1 to establish a scale,

(6) Lygy = 2(co3 (A /2 ).

Therefore the problam 13 solved If o can be determinud.
This can be done by findiwng tha valus of A that asliafies
3. v
Copputation

1

Tho computation ofed for a glven A.;y 13 genuvrally
not teasible without a coumputar. Appendix 1 i3 a PASCAL
progran that axecutos tha appropriats algorithan. It
computes circle poaltions given tha correlations tor a two
or thrae variable problem. The heart of the program i the
procadura CONYERGE . For any valua or.{.z. converga

calculates A by succassiva approximations until A 13
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[} = ny
within ,0001 rediene of ita true velus. The value of L
3 = 1/2 {e+bsc)
d . i3 then ccmputed by usiong equation (6).
an .
(9) Vv 2 ((s-a) (a-b) (s-c)/s) . 7
It would be todioun to recompute the relations for
Angle & obeye the relation
. every new case of 2 biveriets reletion. Teble | presents
t
values of Ly /R tor and Axq renging from .00 to 1.00 in
(10) & = 2. arctan (v/e~<a)). (Burington, 19x8, i I J
' steps of ,01. If e ballentine is to be drewn by hend
pg. 20). .
e R Table 1 cen be used t§ deterains the redil of the olrcles
[ The co-ordinetes of the two possible points
to be used in the conatruction.
for Cz_ar.
If the bellantines ere to be drewn by computer
(11e) X, = X, + cos (H)-b
» . (04
and = X,( + €05 () Ly, graphics, 1wt CTx be loceted et point (X, Yx) ina
Cartealen Co-ordinete system. A convenient position for
(1) Yy = Ya 2 3in (8) b (
e .
= Yy s an (g) - Ly, » ) Xy,Yy)'S .

y (1) X, = X, + L
- The program in Appendix 1 hes an option which locatos 4 x 9
Y a Y
all ciroles “reletive to Cy = (0,0) using the scale R = y *
Locating Czla alightly more complex. As Figure X shows,
1s or, as en option, the user mey specify the desired
the threc points € c and Cp» define a triangle with
scale and origin. The progrem then locetes the bellentine kY 'zéa
sides L L and L Let be the interlor angle
on the user’s go-ordinate systea. g mw $*
of the triangled Cy c3 C, ot point Cy .For esse of

Y
notetion, 1let
i
(8) a a ng 14
b sz

Q )
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Legends References
Burington, R.S. (19%8) Hapndbook of matheuatical
. Lables and formpulaa, dusky, OH: Handb 5
Flgure 1: A ballantine representing the corrclations Sandusky, OH andbook Publishers,

Inc.
betweeo an auditory deteotion task, a visual detcetlon

task, and a test of arithmetio akill.

Cohen, J. and Cohen, P. (1975) Applied pultiple

flgure 2: A correlation Indicated by an overlap ftecreaalopal and correlation analvals for the bedavioral

aclences, H{11adale, NJ: .
between tuo circlea. For the representation to be exact b 3 ! Erlbaun Assoclates

the proportion of the area of each circle that falls in !
reglon A‘ahould be equal to rz'.
. / .
Flgure 3: The geometric rclations used td construct
an appropriate ballantine. Angleck is impllcitly defincd
by r %, Angléa(. in turn, deternines the length of line L‘y_ .

Flgure ¥: The three lines between the centers of the *
clrclcs define one of tuo possible triangles, with Clrele
Z either above or below linc L{’. By solving for the
intcrior angle ® at the center of cirecle X, and glven Lxz»
the position of Circle Z 13 detornined relative to X and . '

the position of Circle X. N
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Appendix 1

Research and the University of Washington (Earl Hunt,

program ballantine(input,output);
Principal Invoatlgltor): The opinions expressed are
{ Locates circles so that overlap is r~2 of area of e®ach circie )
entirely the responsibility of the author. Colene HMcKee's
assistance in preparing the graphs i3 gratefully

const pi = 3,14159265;
acknowledged.

var cx, cy, radius ireal} com: charg

function a2srqqiconsts pi,p2ireal4): reald; externg

¢ IBM arctan function )

function converge(rireal):real};
{computes value of anQle theta , and then

uses theta to compute the distance between circle centers.
Input s r~2.

Qutput is distance betwaen ceanters, assuming radius of 1 )
var high,low, alpha, old, delta, q, z 1 real;
begin { converge )

tf r = 1,0 then converQe = 0,0 ( {dentical circles ) else

/ 1f r <= 0,0 then converQe = 2,0 (no intersection ) elne
|
i
|

ERIC
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beQin ( intersecting circles. cospute overlap )

low := 0O; high t= pi3 ( angle theta from O to pi in radians )
Qtxr % pij ( sector area of overlap )

old 1= 05 alpha 1= pi/2.03 { 90 degrees, initial guess for angle )

repeat { converge loop ) !
I

2 := alpha -sin(alpha)} }
if z ='q then delta 1* 0.0 (mxact match) else
(compute adjustment )
begin
old 3= alphaj
if 2 > q then ( decrsase alpha )
begin
alpha 1= alpha - (alpha-low)/2.0;
high t= pldj
end
else { increase alpha )}
begin
alpha 1= alpha + (high~alpha)/2.0;
low t= pld}
endj
delta 1= abs{old-alphal); (mize of adjustment )
end; ( of adjustment )
until delta <0.0001) ( converge to thousandth of a radian )

' { compute the distance batween circles )

ERIC BNt

Aruitoxt provided by Eic:

alpha := alpha/2.0;
converge := 2,0 $ cosfalpha);
end; ( overlap computed ) N
end; { converge functlpn b)
procedure graphpars{var cx,cy,radius sreal)j
{Computes the scale and translation factors for a real graph )

| | ‘1

\
\

begin
writeln ('Your g;qph is assumed to have 0,0 at the lower left’);
writeln ("enter makjpum value of x and y as integers ')
readlnf{cx,cy) s \ )
€X 1= €x/2.03 cy = :;>§¢0;
if cx < cy then radius »0,90 % ex/2.0
else radius t» 0.9 ¢ cy/2.0;

end; { Graphpars )
Procedure twocircles(cx,cy,radius:real);
var r,c,l,z,x trealj
begin { twocircles )
writeln ('What is the value of the cogrelation )3

readln(r)y r t=» r % r}

1 = converge(r) & radius j

‘, \



writeln(’Distance between circles is *,1:11014);
X 1= cx-1/2,03 z 1= cx + 1/2.03 )
writeln( *Circle X at point °,x1732,’ ’,cy:17:12);
writeln( °Circle Y at point °,21732,° ’,cy:17:12)
writeln(® Radius = ’,radiusi10:14);

end; ( twocircles 3}
Procedure threecircles(cx,cy,radiusireal); 0

const x = 13 y = 23 z = X3 ( used for names of circle }

var rxy, rxz, ryz, lxy, 1xz, lyz sreal ; ( Same names as in paper }
cc 1 ar-ay 1,.3,1,.2] of real; ( centers of circles )
a,b, c, s, thata, v : realj f Auxilary variables named in paper )
xx, dx, dy 3 realy ( scratch variables for computing }

.

begin { procedure threecircles }

{Qet needed values )
writeln (*Values of correlations rxy, rxz, ryz (real ) *);
readln (rxy,rxz,ryz)j
rXy 3= rxy & rxyj rxz 1% rxz & rixj ryz 1= ryz § ryzj
{ calculate intercircle distances )}
1xy »= converge(rxy)}
1x2 1= converqe(rxz)j

lyz 1= convergel(ryz)j

21
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{ convert to aux{lary notation to conform to the taext )}
a 1= lyzy b gm Ixyj c s» lxz}
s 1= (a + b+ C)/2.09
v = (s-a) & (s~b) 8 (s-c) / s}

v 1= sgrt(v)g xx s= s-ag

( calculate value of intarior angle theta at center of circle % and -then

determine the distance center of z falls below the X-y centerline.

theta 1» 2 ¢ a2srqqlv,xx); ( IBM terminology for arctan )

dy := sin(theta) 8 1lxz; dx t= cos(theta) & lxz}
{(determine center points,converting to actual orap; }
cclix,%] 32 cx - (1xy/2.0) ¢ radiusg
(x-y symmnatric re vertical axis)
cclix,yl 3= cy + (dy/2.0) ¢ radlusg
{ x~z2 symmetric re horizontal axis)
ccly,x] 1= cx + (1xy/2.0) ¢ radius}
' cely,yl 1= cclx,yd;
cclz,x)] 3= cclx,x) + dx ¢ radiusy
ccfz,yl 1= cclx,y) - dy ¢ radius;
{print results )} .

writeln (*Ballantine for rxy = *,sqrt(rxy)15:%,

! orxz= ?,8qrtirxz)15:3,’ ryz *,sqrtiryz)1513);

writelng
4 writeln (’circle X Y’
writeln (* X *scelx,®x87:12,” ’,cclx,yli17:12);

writeln (* Y *scely,x127:2,° ’,cely,yls712)

}

24



i
writeln ¢* 2 'ycelz,x11712,' *,celz,y)1712);

writeln;

writeln (° All radil = °,radiust7:1);

end} { Of threecircie procsdure )

began { main program )
write (* Is a real (r) or abstract (a) graph to be positioned * )y
readln(com);
if com = 'r* then qraphparl(cx,cy,rnqlul) else
begin
writeln (*Abstract oréph centered at 0,0 with radius = t *)j
CX 3= 03 cy 1= 0} radius = 1.0}
end3
write(® 18 a two (2) or three (3) variab.e problem to be computed” *);
readin{com)}
if com = *°2° then twocircles(cx,cy,radius) else

1f com = *3* then threscirclestcx,cy,radius)

else writeln ("undefined problem®); N

enu. (Of main program )

oo
v
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0.00
0.10
0.20
0.30
r 0.40
0.30
0.40
0.70
0.80
0.90

2.00
1.61
1.37
1.17
0.98
0.81
0.64
0.48
0.32
0.16

0.00 0.0t

1.92
1.38
1.33
1.13
0.97
0.79
0.62
Q.46
0.30
0.14

1.87
1.36
1.33
1.13
0.95
0.77
0. 61
0.44
0.28
0.13

Table 1

1.83
1.33
1.31
1.11
0.93

- 0.76

0.39
0.43
0.27
0.11

r

0,02 0.03 0.04

1.79
1.3t
1.29
1.09
0.91
0.74
0.37
0.41
0.23
0.09

0.05 0.06 0.07 0.08 0.09

1.76
1.49
1.27
1.08
0.89
0.72
0.386
0.40
0.24
0.08

1.72
1.44
1.23
1.06
0.88
0.7%
0.54
0.38
0.22
0.06

1.69
1.44
1.23
1.04
0.86
0.69
0.%2
0.36
0.20
0.03

1.67
1.42
1.21
1.02
Q.64
0.647
0.51

0,35’

0.19
0.03

Distance between circles of radius one as a fynction of the
I

1.64
1.40
1.19
1.00
0.83
0.66
0.49
0.33
0.17
0.02

Lol
correlation (r) between the variasbles represented by the circles
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